Physical and Theoretical Chemistry

Department of Chemistry University of Oxford

Research overview

Introduction

The Physical and Theoretical Chemistry Laboratory (the PTCL) is one of three laboratories comprising the Department of Chemistry, University of Oxford. The Laboratories were united 'under one roof' in 1993-94 to create the largest and most productive, '5* quality' university research laboratory in the UK, typically publishing around 200 original research papers and books each year. It accommodates nearly 30 academic staff, including in recent years 8 Fellows of the Royal Society and 7 Royal Society University Research Fellows (URF's). The laboratory also houses some 40 post-doctoral researchers (in recent years including Ramsay Fellows, Glasstone Fellows, Leverhume Fellows and Dorothy Hodgkin Fellows), around 100 graduate students (more than half supported by Research Council awards), and over 40 Part II undergraduate students. In addition, we regularly host senior and post-doctoral visiting researchers from all around the world.

Research Areas

The research activities of the Laboratory include most branches of physical and theoretical chemistry, and there is accommodation for about 130 postgraduate research workers, including those working for Part II of the Honour School of Chemistry.

Research is carried out in the fields outlined below (links to individual members of staff can be obtained by clicking on their name).

Structure at Interfaces

Aarts, Dullens, Foord, Perkin

(i) Surface and interfacial studies of soft matter, particularly polymeric and colloidal systems;

(ii) Neutron and X-ray scattering from surfaces and adsorbed molecules at liquid interfaces;

(iii) Adsorption, desorption, epitaxial growth, surface science.

Theoretical and Computational Chemistry

Barford, Clary, Doye, Galpin, Green, Logan, Manolopoulos, Wilson

(i) Condensed matter theory: many-body approaches to strongly correlated electron systems, electronic phase transitions, localization and quantum transport;

(ii) Internal dynamics of small molecules and molecular complexes, intramolecular vibrational relaxation, predissociation and ionization; 

(iii) Quantum mechanics of molecular collisions, including reactive scattering; 

(iv) Applications of the methods of artificial intelligence to the solution of scientific problems; 

(v) Electronic and optical processes in organic macromolecular systems; 

(vi)Theory and computer simulation of soft condensed matter and biological materials. 

(vii) Application of quantum methods to problems in condensed phases and systems of biological importance; 

(viii) Development of methods for large scale ab initio calculations with applications to biological systems and nanotechology.

(ix) Construction, development and application of atomistic simulation models. Network-forming materials, nanoparticles, low-dimensional solids, p- and T-driven phase transitions.

Spectroscopy, Photochemistry and Reaction Dynamics

Brouard, Hore, Kukura, Mackenzie, Ritchie, Softley, Vallance,

(i) Structure and properties of van der Waals molecules: microwave and infra-red laser diode spectroscopy;

(ii) Electronic spectroscopy of jet-cooled molecules and molecular clusters in both the frequency and time domains;

(iii) Laser spectroscopy and photophysics in the VUV and XUV: Rydberg states, photoionization and ZEKE photoelectron spectroscopy. 

(iv) Gas phase molecular reaction dynamics; stereodynamics of photodissociation and bimolecular collisions, state-to-state dynamics of neutral and ionic reagents;

(v) Atmospheric photochemistry and kinetics;

(vi) Properties and collisions of highly electronically excited Rydberg molecules; ultracold molecules and ultracold reactive collisions;

(vii) Laser diagnostics in plasma chemistry, cavity enhanced diode laser absorption;

(viii) NMR, EPR and optical spectroscopic studies of free radical reactions;

(ix) Effects of magnetic fields on chemical reaction rates and yields;

(x) Real time nano-dynamics, light matter interaction, ultrafast nano-photonics.

Electrochemistry and electroanalysis

Compton, Foord

(i) Studies of liquid/liquid interfaces;

(ii) Electrochemistry of modified carbon electrodes and carbon nanotubes, nanoparticles;

(iii) Atomic force microscopy, ESR Electrochemistry; 

(iv) Electroanalysis;

(v) Room temperature ionic liquids;

(vi) Organic electrosynthesis;

(vii) Computation electrochemistry;

(viii) Corrosion, catalysis, molecular beam scattering and photochemistry at metal, semi-conductor and insulator surfaces.

Biophysical Chemistry

Baldwin, Benesch, Hore, Kukura, Robinson, Wallace

(i) Computer aided molecular design;

(ii) Determination of protein structure and folding by real-time NMR;

(iii) Vibrational and electronic spectroscopy of jet-cooled molecules and molecular clusters of biological importance;

(iv) Simulation of biological electron transfer and redox properties;

(v) Studies of mechanism of avian magnetoreception;

(vi) Single-molecule fluorescence spectroscopy of membrane protein function;

(vii) Biological applications of mass spectrometry to the study of membrane proteins;

(viii) Real time nano-dynamics, light matter interaction, ultrafast nano-photonics.

 

Information

Online Research Information

The Departmental web pages contain a complete list of all academic staff, together with links to their research group web pages. Academic supervisors will also be very glad to provide fuller details, and to discuss projects on an individual basis. General enquiries should be addressed to the Head of Department.

Facilities

The Laboratory has outstanding facilities for both experimental and computational research. The Laboratory has an excellent computer support infrastructure, with nearly all the computer systems connected via the Departmental ethernet to each other, and to the University Network. The laboratory tradition of developing new instrumentation ensures the maintenance of first class electronic and mechanical engineering workshops, which are equipped with CAD facilities. High field NMR spectrometers and a host of other, more specialised instrumentation are also available. There is a wide-ranging Laboratory laser 'armoury', and the Rutherford Appleton Laboratory's Laser Support Facility, together with the Neutron Facility are within easy reach. There is a small Departmental library, although most of the major scientific journals can now be accessed electronically via the ethernet system. The Radcliffe Science Library , which holds a complete stock of published material, is situated 'just down the road'.

Seminars

Postgraduate lectures and seminars in Physical and Theoretical Chemistry are held each week throughout the teaching year, as well as a plethora of individual group meetings; the annual series of Hinshelwood Lectures, presented by internationally distinguished visitors to the Department are a special highlight. A list of past Hinshelwood Lecturers can be found here.